Show that there are no integers
$$g_{b,c}$$
 for
Which $a^2+b^2-8c=6$

$$a^2 + (b^2 - 8c - 6) = 0$$
 is a quadratic
in a

$$\Rightarrow a = -0 \pm \sqrt{0^{2} - 4(6^{2} - 8c - 6)}$$

$$= \pm 2\sqrt{b^{2} - 8c - 6}$$

$$= \pm \sqrt{b^{2} - 8c - 6}$$
We know that a is an integer, so

b²-8c-6 nust be a perfect square

h mod 4	n ² mod 4
0	0
1)
2	0
3	

NOW, $\& c \equiv 0 \mod 4$ for any value of c and $6 \equiv 2 \mod 4$.

If $b^2 \equiv 0 \mod 4$ then $b^2 - 8c - 6 \equiv 2 \mod 4$ and therefore cannot be a square of $b^2 \equiv 1 \mod 4$ then $b^2 - 8c - 6 \equiv 3 \mod 4$ and therefore cannot be a square. Hence it is impossible to find integers 9,6,c for which $a^2 + b^2 - 8c \equiv 6$